Abstract

The present investigation explores the controlled architecture of a CeO2–ZnO nanocomposite via a template-free, low temperature, facile single step solvothermal approach. This complex architecture depicts cubic single crystalline CeO2 nanoparticles (size ∼15 nm) grown on the edges of tapered ZnO nanorods with definite orientations and alignments. The formation of wurtzite ZnO, cubic CeO2 and the coexistence of Ce3+ and Ce4+ on the surface of the CeO2–ZnO nanocomposites are confirmed using various characterization tools. The finding of such unique nanostructures by a facile method is exemplified by a plausible growth mechanism. Surprisingly, the aqueous mediated ultrasonication reaction conferred the formation of crystalline ZnO nanotubes of diameter ∼50 nm. Spatially resolved cathodoluminescence spectra are obtained by linearly scanning an individual CeO2–ZnO nanorod along its length, which reveals the size-dependent surface effects. Interestingly, such hybrid CeO2–ZnO nanoarchitecture is observed to exhibit enhanced field emission properties, demonstrating better current stability as compared to other ZnO nanostructures. This is attributed mainly to strong surface interactions between the Ce-ionic species and the ZnO nanorods. Herein, a soft-chemical approach is used for the first time to architect a binary oxide nanostructure, which is otherwise accomplished using high temperature techniques, as reported elsewhere. Also, the present work not only gives insight into understanding the hierarchical growth behaviour of the CeO2–ZnO nanocomposite in a solution phase synthetic system, but also provides an efficient route to enhance the field emission performance of ZnO nanostructures, which could be extended to other potential applications, such as chemical sensors, optoelectronic devices and photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.