Abstract

Two amphiphilic butadienyl dyes 1 and 2 form stable monolayers at the air/water interface in the presence of various salts. Dye 1 consists of the basic amphiphilic butadienyl chromophore. In dye 2, the dimethoxybenzene part of dye 1 is substituted by benzodithia-15-crown-5. The monolayers have been characterized by surface pressure-area and surface potential-area isotherms as well as Brewster angle microscopy and reflection spectroscopy. In contrast to dye 1, dye 2 interacts specifically with Hg 2+ and Ag + cations forming complexes . No complex formation was observed with alkali and earth alkali metal ions. The nature of the anion (Cl − or ClO 4 −) influences the monolayer behaviour of both dyes. At the air/water interface, besides monomers of the dyes, two types of associates are coexisting in the pure dye monolayers on aqueous salt solutions, attributed to dimers and aggregates, respectively. Their equilibria depend on the nature of both cations and anions in the subphase, as in the case of dye 2, or only anions, as in the case of dye 1. The dimers may be organized as head-to-tail dimers with the intermolecular distances 0.38 and 0.45 nm for dye 1 and dye 2, respectively. According to the extended dipole model, we propose formation of aggregates in which the chromophores are parallel to each other with the same intermolecular distances as in the dimers, and the centers of their transition moments shifted by 0.95 nm (dye 1) and 1.2 nm (dye 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.