Abstract

Activity observed in biological neural networks is determined by anatomical connectivity between cortical areas. The monkey frontoparietal network facilitates cognitive functions, but the organization of its connectivity is unknown. Here, a new connectivity matrix is proposed which shows that the network utilizes a small-world architecture and the 3-node M9 motif. Its areas exhibit relatively homogeneous connectivity with no suggestion of the hubs seen in scale-free networks. Crucially, its M9 dynamical relay motif is optimally arranged for near-zero and non-zero phase synchrony to arise in support of cognition, serving as a candidate topological mechanism for previously reported findings. These results can serve as a benchmark to be used in the treatment of neurological disorders where the types of cognition the frontoparietal network supports are impaired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.