Abstract

The distribution of amygdaloid axons in the various brainstem dopaminergic, noradrenergic and adrenergic cell groups was examined. This was accomplished by means of the Phaseolus vulgaris leucoagglutinin lectin (PHA-L) anterograde tracing technique combined with glucose-oxidase immunocytochemistry to catecholamine markers (i.e., tyrosine hydroxylase, dopamine beta hydroxylase and phenylethanolamine N-methyltransferase). Injections of PHA-L in the medial part of the central amygdaloid nucleus resulted in axonal and terminal labeling in most catecholamine cell groups in the brainstem. Amygdaloid terminals appeared to contact catecholaminergic cells in several brainstem regions. The most heavily innervated catecholaminergic cells were the A9 (lateral) and A8 dopaminergic cell groups and the C2/A2 adrenergic/noradrenergic cell groups in the nucleus of the solitary tract. The medial pan of the A9 and adjacent A10 dopaminergic cell groups was moderately innervated. A moderate innervation by amygdaloid terminals was observed on rostral locus coeruleus noradrenergic cells (A6 rostral) and adrenergic cells of the rostral ventrolateral medulla (C1). Noradrenergic cells of the A5, main body of the locus coeruleus (A6), A7 and subcoeruleus were sparsely innervated. Amygdaloid axons were not observed on noradrenergic neurons of the A4 cell group, area postrema and A1 cells of the ventrolateral medulla. The results demonstrate that the amygdala primarily innervates the dopaminergic cells of midbrain (i.e., A8 and lateral A9 cells) and the adrenergic cells (C2) and noradrenergic (A2) cells in the nucleus of the solitary tract. The possible functional significance of amygdaloid innervation of catecholaminergic cells is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.