Abstract

The cloning of five DNA segments carrying at least seven genes (fms1, fms3, fms4, fms5, fms7, fms11, and fms12) that participate in fortimicin A (astromicin) biosynthesis was described previously. These DNA fragments were used to screen a cosmid library of genomic DNA in order to examine if these biosynthetic genes are clustered in Micromonospora olivasterospora. One cosmid clone (pGLM990) was obtained, which hybridized to all the probes. Complementation analysis, using mutants blocked at various steps and chimeric plasmids subcloned from pGLM990, showed that three additional genes (fms8, fms10, and fms13) are present in pGLM990. A gene conferring self-resistance to the antibiotic, which was independently cloned in Streptomyces lividans, using the plasmid vector pIJ702 was also found to be linked to the cluster of biosynthetic genes. Thus, at least ten biosynthetic genes and a self-defense gene are clustered in a chromosomal region of about 27 kb in M. olivasterospora. Interestingly, the fms8 gene which participates in the dehydroxylation step of fortimicin A biosynthesis was found to have homology with a neomycin resistance gene nmrA from the neomycin-producing Micromonospora sp. MK50. Studies using a cell-free extract of the fms8 mutant and its parent strain showed that the enzyme encoded by fms8 phosphorylates a biosynthetic precursor, fortimicin KK1, in the presence of ATP. Thus the dehydroxylation reaction is suggested to occur via the phosphorylation of the target hydroxyl group. DNA regions homologous to fms genes were found in Micromonospora sp. SF-2098 and Dactylosporangium matsuzakiense, both producers of fortimicin group antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call