Abstract

A monoclonal IgM, specifically recognizingbothCD11b and CD18 of human neutrophils, was used to examine the organization and mobility of CD11b/CD18 in the plasma membrane of human neutrophils degranulated by dihydrocytochalasin B (dhCB) treatment and fMet-Leu-Phe (fMLF) stimulation. Subcellular fractionation analysis of untreated or dhCB-treated control neutrophils indicated that 20% of CD11b/CD18 cosedimented with plasma membrane and the remainder with specific granules. In contrast, fMLF stimulation of dhCB-treated cells caused a major reorganization of CD11b/CD18, in which 60–70% of CD11b/CD18 sedimented in dense plasma membrane fractions that were also enriched in superoxide-generating NADPH oxidase activity. Similarly pretreated neutrophils were fixed, immunogold labeled, and examined by scanning electron microscopy. Immunogold particles were distributed uniformly over the symmetrically ruffled surface of unstimulated neutrophils. On dhCB-treated cells, immunogold was mostly uniformly distributed on a smooth membrane with a small percentage of particles lining up into linear arrays. After fMLF + dhCB stimulation, CD11b/CD18 gold label was more abundant on the cell surface and formed large aggregates on polarized membrane protrusions. However, when cells were adhered to an albumin-coated quartz surface and stimulated with fMLF in the presence of dhCB, immunogold was excluded on the articulated and rounded cell body but concentrated on the periphery of adherent lamellae. Fluorescence photobleaching recovery indicated that in unstimulated cells 38 ± 3% of CD11b/CD18 was mobile (R) with a diffusion constantDof 3.1 ± 0.3 × 10−10cm2/s. Treatment with dhCB raisedRandD24 and 74%, respectively. Stimulation using 1 μM fMLF with dhCB loweredDandRto near control levels. Since NADPH oxidase and CD11b/CD18 cosediment in high-density plasma membrane domains after fMLF + dhCB stimulation, we speculate that a stimulus-induced reorganization of CD11b/CD18 and NADPH oxidase to common membrane domains may occur in fMLF + dhCB-degranulated neutrophils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.