Abstract
The molecular organization of sterols in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 37 degrees C is examined by utilizing the fluorescent analogue of cholesterol cholesta-5,7,9-trien-3 beta-ol (cholestatrienol). (1) Cholestatrienol is shown to be indistinguishable from native cholesterol in terms of its ability to condense POPC, as determined by (i) pressure/area studies of mixed-lipid monolayers and (ii) its ability to increase the order of POPC bilayers (determined by electron spin resonance studies) whether on its own or admixed with cholesterol at various ratios. (2) By analysis of the perturbation of the absorption spectra, cholestatrienol was found to be freely miscible in aggregates of cholesterol in buffer. In contrast, a lack of any detectable direct interaction of the sterol molecules in POPC bilayers was detected. (3) Fluorescence intensity and lifetime measurements of POPC/sterol (1:1 mol/mol) at various cholesterol/cholestratrienol molar ratios (0.5:1 up to 1:1 cholestatrienol/POPC) confirmed that sterol molecules in the membrane matrix were not associated to any great degree. (4) A quantitative estimate of how close sterol molecules approach each other in the membrane matrix was evaluated from the concentration dependence of the steady-state depolarization of fluorescence and was found to be 10.6 A. From geometrical considerations, the sterol/phospholipid phase at 1:1 mol/mol is depicted as each sterol having four POPC molecules as nearest neighbors. We term this arrangement of the lipid matrix an "ordered bimolecular mesomorphic lattice". (5) The concentration dependence of depolarization of fluorescence of cholestatrienol in POPC liposomes in the absence of cholesterol yielded results that were consistent with the cholestatrienol molecules being homogeneously dispersed throughout the phospholipid phase at sterol/POPC ratios of less than 1:1. (6) From qualitative calculations of the van der Walls' hydrophobic interactions of the lipid species, the phospholipid condensing effect of cholesterol is postulated to arise from increased interpenetration of the flexible methylene segments of the acyl chains, as a direct result of their greater mutual attraction compared to their attraction for neighboring sterol molecules. (7) The interdependence of the ordered bimolecular mesomorphic lattice and the acyl chain condensation is discussed in an effort to understand the ability of cholesterol to modulate the physical and mechanical properties of biological membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.