Abstract

We introduce a class of weighted graphs whose properties are meant to mimic the topological features of idiotypic networks, namely, the interaction networks involving the B core of the immune system. Each node is endowed with a bit string representing the idiotypic specificity of the corresponding B cell, and the proper distance between any couple of bit strings provides the coupling strength between the two nodes. We show that a biased distribution of the entries in bit strings can yield fringes in the (weighted) degree distribution, small-world features, and scaling laws, in agreement with experimental findings. We also investigate the role of aging, thought of as a progressive increase in the degree of bias in bit strings, and we show that it can possibly induce mild percolation phenomena, which are investigated too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.