Abstract

Mitochondria are essential organelles that are involved in numerous metabolic pathways and produce the major part of intracellular ATP by oxidative phosphorylation. Their ultrastructure was solved in the 1950s by electron microscopic analysis of ultrathin sections. Based on these pioneering studies and on the endosymbiotic origin of mitochondria, cells are often assumed to contain numerous independent mitochondria with a size similar to that of bacteria. However, electron microscopy of thick sections reveals that mitochondria form elongated and branched filaments. Optical microscopy of living cells demonstrates that mitochondrial filaments continuously modify their position and morphology and that they undergo frequent fission and fusion reactions. In this review, we revise the actual knowledge on the ultrastructure, the organization and the dynamics of the mitochondrial compartment. We review recent findings showing that mitochondria exchange molecules by fusion and we present the main proteins involved in mitochondrial fusion and fission reactions. Finally, we discuss the functional and physiological relevance of mitochondrial dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call