Abstract

Type III protein secretion systems are unique bacterial nanomachines with the capacity to deliver bacterial effector proteins into eukaryotic cells. These systems are critical to the biology of many pathogenic or symbiotic bacteria for insects, plants, animals, and humans. Essential components of these systems are multiprotein envelope-associated organelles known as the needle complex and a group of membrane proteins that compose the so-called export apparatus. Here, we show that components of the export apparatus associate intimately with the needle complex, forming a structure that can be visualized by cryo-electron microscopy. We also show that formation of the needle complex base is initiated at the export apparatus and that, in the absence of export apparatus components, there is a significant reduction in the levels of needle complex base assembly. Our results show a substantial coordination in the assembly of the two central elements of type III secretion machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.