Abstract

The increased demand on protein folding in the endoplasmic reticulum (ER) during bacterial infection activates the unfolded protein response (UPR). OCTR-1--a G protein-coupled catecholamine receptor expressed in neurons--suppresses innate immunity by downregulating a non-canonical UPR pathway and the p38 MAPK pathway. Here, we show that OCTR-1 also regulates the canonical UPR pathway, which is controlled by XBP-1, at the organismal level. Importantly, XBP-1 is not under OCTR-1 control during development, only at the adult stage. Our results indicate that the nervous system temporally controls the UPR pathway to maintain ER homeostasis during development and immune activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.