Abstract

Hamster cell nuclear DNA is shown to contain inverted repeat (foldback) sequences, in some respects similar to the foldback fraction in DNA from other animal cell types. Using electron microscopy the majority of foldback duplexes are shown to be located in simple hairpin-like DNA structures, formed from individual pairs of complementary inverted repeated sequences 50–1000 nucleotides in length, in some cases arranged in tandem, and in other cases separated by intervening sequences, up to 16 000 nucleotide residues long. In addition, a novel class of foldback structure, referred to as ‘bubbled hairpins’ is reported, which appear to be formed from clusters of inverted repeat sequences that are separated from adjacent clusters of complementary inverted repeats by large intervening sequences which vary in length from 5000 to over 20 000 nucleotide residues. Due to the special pattern of distribution of these latter inverted repeat sequences, ‘bubbled hairpins’ are observed only in long foldback DNA. Evidence is presented that the distribution of foldback sequences in hamster cell DNA is highly ordered. The lengths of the intervening single chains in foldback structures appear to vary non-randomly. This gives rise to a localised periodic pattern of organisation that is believed to be a consequence of regular alternating arrangements of foldback and non-foldback sequences in the segments of DNA from which foldback structures are derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call