Abstract

The Dawson-type sulfate polyoxometalate (POM) [S2W18O62]4- has successfully been entrapped in polypyrrole (PPy) films on glassy carbon electrode (GCE) surfaces through pyrrole electropolymerization. Films of varying POM loadings (i.e., thickness) were grown by chronocoulometry. Film-coated electrodes were then characterized using voltammetry, revealing POM surface coverages ranging from 1.9 to 11.7 × 10-9 mol·cm-2, and were stable over 100 redox cycles. Typical film morphology and composition were revealed to be porous using atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and the effects of this porosity on POM redox activity were probed using AC impedance. The hybrid organic-inorganic films exhibited a good electrocatalytic response toward the reduction of iodate with a sensitivity of 0.769 μA·cm-2·μM-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.