Abstract

Obtaining a wear-resistant, high-output, flexible direct current (DC) friction energy harvester is quite important for implementing self-powered portable electronic devices and Internet of Things (IoT). In this work, a direct current flexible textile organic tribovoltaic nanogenerator (FT-OTG) is reported, which is consisted of blended film of 11.11% poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) and 88.89% polyvinyl alcohol (PVA), a hydrophilic conductive ink, a hydrophobic conductive textile and Al slider. The working mechanism of OTG is that after absorbing friction energy, abound electron-hole pairs are excited at the metal-semiconductor interface. These carriers move directionally under the joint drive of electrostatic field and the built-in electric field to form a current. After PVA doping, the output performance of DC-OTG, including open-circuit voltage and short-circuit current, is improved 5.6 times and 4.2 times, respectively. Furthermore, the mechanical properties of blended film, such as wear resistance, elongation and tensile strength, are improved, among which elongation at break is increased by 8 times and tensile strength increased by 3.2 times. By simplify series connecting, 3 FT-OTGs can constantly power portable electronics, like electronic watch, thermometer and calculator, respectively. This work provides an effective way for simultaneously enhanced output performance and mechanical properties of FT-OTG, which is expected to be a robust way for harvesting friction energy for self-powered electronics device and IoT sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.