Abstract

A new organic/inorganic hybrid bicomponent nanomaterial was obtained by quasi-Langmuir-Shafer (QLS) method with a mixed (phthalocyaninato)-(porphyrinato) europium complex (TPyP)Eu2[Pc(OPh)8]2 and the inorganic material CdS. The conductivity of the (TPyP)Eu2[Pc(OPh)8]2/CdS hybrid film (1.9 × 10−7 S cm−1) was greatly improved compared to the (TPyP)Eu2[Pc(OPh)8]2 film (6 × 10−10 S cm−1). In good contrast, the (TPyP)Eu2[Pc(OPh)8]2/CdS bicomponent thin film transistor devices constructed by QLS method revealed excellent ambipolar performance, much larger hole mobility (0.09 cm2 V−1 s−1; on/off ratio of 104) and electron mobility (0.01 cm2 V−1 s−1; on/off ratio of 103) when compared with single-component (TPyP)Eu2[Pc(OPh)8] film that showed 6.9 × 10−7 cm2 V−1 s−1 hole mobility (on/off ratio of 102) and 3.07 × 10−5 cm2 V−1 s−1 electron mobility (on/off ratio of 102). In addition, SEM and AFM results also showed that the bicomponent film had a uniform particle size distribution and a dense film structure. These properties could reduce the obstacles and carrier traps in the film and stabilize its electrical properties, which could greatly facilitate the transport of electrons and holes. The research work opens a new way for the preparation of stable, high-performance ambipolar OTFT devices in the air through molecular design and device assembly technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.