Abstract

We report structural and electrical transport properties of a family of π-stacking soluble organic semiconductors, N,N‘-dialkyl-3,4,9,10-perylene tetracarboxylic diimides (alkyl − pentyl [1], octyl [2], and dodecyl [3]). The structures of evaporated polycrystalline films of 1−3 were studied using X-ray diffraction and atomic force microscopy. Films of 1−3 pack similarly with the direction of π−π overlap in the substrate plane. Organic thin film transistors (OTFTs) based on 1−3 deposited on SiO2 gate dielectric showed linear regime electron mobilities of 0.1, 0.6, and 0.2 cm2/(V s), respectively, corrected for contact resistance. OTFTs of 2 had saturation electron mobilities as high as 1.7 cm2/(V s) with on-to-off current ratios of 107. Variable temperature measurements were used to examine the charge transport kinetics in the range 80−300 K and revealed (1) thermally activated electron mobilities with activation energies dependent on gate voltage and (2) the presence of well-defined isokinetic points, i.e...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call