Abstract

A series of ZSM-5/ZSM-11 co-crystalline zeolites with various compositions and morphologies were successfully synthesized via an organic template-free hydrothermal route and characterized by XRD, XRF, SEM, NMR and N 2 adsorption/desorption technologies. The effects of raw materials and batch composition were investigated systematically. Various silicon sources can be employed in the organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite, however only a few types of aluminum sources are available. This organic template-free system is favorable to the aluminum-rich zeolite. With the increase of initial SiO 2/Al 2O 3 ratio, the ZSM-5 percentage in the ZSM-5/ZSM-11 co-crystalline zeolite increases as well as the crystal size, and especially the morphology of ZSM-5/ZSM-11 co-crystalline zeolite prepared from the colloidal silica–NaAlO 2 solution system changes gradually from nano-rod aggregation, micro-spindle to single hexagon and then to twinned hexagon crystals. Moreover, Na + and OH − in the initial materials can promote the nucleation of the ZSM-5/ZSM-11 co-crystalline zeolite significantly and are beneficial to the formation of crystals with relatively low length/width ratio, while K + postpones the crystallization process seriously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call