Abstract

Three different polymorphic crystalline structures, including microbelts and flowerlike supernanostructures, were obtained via a simple solution process by utilizing different solvents from an oligoarene derivative. Explosive chemosensors based on these self-assembled organic crystalline nanostructures were successfully fabricated. The differences in the structures on the microscopic level and in the film morphologies led to dramatic enhancements of the explosive detection speed. With the evolution of structures from the netted 1D microbelts to the flowerlike supernanostructures, the detection speed of the chemosensors for DNT and TNT was improved by more than 700 times. Our discovery demonstrates that the morphology control through self-assembly provides a new platform to utilize organic crystalline microstructures for chemosensors, optoelectronics, biosensors and bioelectronics, and so forth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.