Abstract

Two new series of organic soluble indigoids 7-7′-dialkoxyindigoids (2a, 2b) and 4,4′-dibromo-7,7′-dialkoxyindigoids (3a, 3b) (alkoxy = n-butoxy and n-octyloxy) were synthesized starting from the inexpensive 3-hydroxybenzaldehyde. The indigoids were soluble in common organic solvents including chloroform, dichloromethane, toluene, ethyl acetate and ethers. The enhanced solubility was suggested to be a lack of intermolecular hydrogen-bonds as confirmed by single crystal X-ray diffraction analyses. It was found that intramolecular hydrogen-bonds in indigoids are crucial to the exhibition of field-effect in OFETs, while intermolecular hydrogen-bonds only caused insolubility of the indigoids. Compared to the pristine insoluble indigo (LUMO = −3.55 eV and Eg = 1.91 eV), the soluble indigoids containing electron donating alkoxy side chains at the indigoid 7 and 7′ positions were shown to have their LUMO decreased by −0.13 to −0.26 eV. Among the indigoid studied, the soluble indigoid 3a containing electron donating alkoxy side chains at the indigoid 7 and 7′ positions and bromine groups at the indigoid 4 and 4′ positions exihibited a narrowest bandgap energy with Eg = 1.66 eV. Employing the same fabrication technique and a bottom-gate-top-contact OFET configuration, the soluble indigoids were found to have electron mobility similar to and within an order of magnitude of the pristine indigo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.