Abstract

The trade-off between the open-circuit voltage (Voc ) and short-circuit current density (Jsc ) has become the core of current organic photovoltaic research, and realizing the minimum energy offsets that can guarantee effective charge generation is strongly desired for high-performance systems. Herein, a high-performance ternary solar cell with a power conversion efficiency of over 18% using a large-bandgap polymer donor, PM6, and a small-bandgap alloy acceptor containing two structurally similar nonfullerene acceptors (Y6 and AQx-3) is reported. This system can take full advantage of solar irradiation and forms a favorable morphology. By varying the ratio of the two acceptors, delicate regulation of the energy levels of the alloy acceptor is achieved, thereby affecting the charge dynamics in the devices. The optimal ternary device exhibits more efficient hole transfer and exciton separation than the PM6:AQx-3-based system and reduced energy loss compared with the PM6:Y6-based system, contributing to better performance. Such a "two-in-one" alloy strategy, which synergizes two highly compatible acceptors, provides a promising path for boosting the photovoltaic performance of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.