Abstract

We have constructed supramolecular solar cells composed of a series of porphyrin–peptide oligomers [porphyrin functionalized α-polypeptides, P(H2P)n or P(ZnP)n (n = 1, 2, 4, 8, 16)], and fullerenes assembled on a nanostructured SnO2 electrode using an electrophoretic deposition method. Remarkable enhancement in the photoelectrochemical performance as well as the broader photoresponse in the visible and near-infrared regions is seen with increasing the number of porphyrin units in α-polypeptide structures. Formation of supramolecular clusters of porphyrins and fullerenes prepared in acetonitrile–toluene = 3 : 1 has been confirmed by transmission electron micrographs (TEM) and the absorption spectra. The highly colored composite clusters of porphyrin–peptide oligomers and fullerenes have been assembled as three-dimensional arrays onto nanostructured SnO2 films using an electrophoretic deposition method. A high power conversion efficiency (η) of ∼1.6% and the maximum incident photon-to-photocurrent efficiency (IPCE = 56%) were attained using composite clusters of free base and zinc porphyrin–peptide hexadecamers [P(H2P)16 and P(ZnP)16] with fullerenes, respectively. Femtosecond transient absorption and fluorescence measurements of porphyrin–fullerene composite films confirm improved electron-transfer properties with increasing number of porphyrins in a polypeptide unit. The formation of molecular assemblies between porphyrins and fullerenes with a polypeptide structure controls the electron-transfer efficiency in the supramolecular complexes, meeting the criteria required for efficient light energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.