Abstract
Monodisperse, indium doped zinc oxide (IZO) nanoparticles were prepared via the polyol-mediated synthesis and incorporated into regular and inverted poly-(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C 61-butyric acid methyl ester organic photovoltaic devices as buffer layers between the active layer and the cathode. Efficient hole blocking at the particle buffer layers leads to an enhanced open-circuit voltage of the solar cells. This effect is even more pronounced for inverted device architectures. Device degradation studies revealed a solar cell performance reduction upon sample exposition to ambient atmosphere. However, this degradation is fully reversible under UV illumination. In addition, the n-doped IZO particles form suitable charge carrier transport layers for an efficient recombination in an intermediate recombination zone in tandem solar cells. Accordingly we have fabricated fully solution-processed tandem solar cells and investigated their optoelectronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.