Abstract

The synthesis and characterization of three solution processable diketopyrrolopyrrole (DPP) derivatives featuring acceptor units attached to the core by alkyne linker units is reported. Cyclic voltammetry and density functional theory calculations indicate that the DPP derivatives possess similar HOMO and LUMO energies. Solar cells were fabricated by blending the synthesized DPP derivatives with [6,6]-phenyl-C71-butyrate methyl ester. The influence of donor:acceptor blend ratio, film thickness, annealing temperature, and annealing time on device performance was studied. Differences in device performance were related to atomic force microscopy measurements of the films. The highest power conversion efficiency of 1.76% was achieved for the DPP derivative functionalized with an aldehyde electron-withdrawing group with a 1∶0.7 donor:acceptor ratio when the active layer was annealed for 10 min at 110°C.

Highlights

  • Solution-processed organic solar cells based upon bulk heterojunction (BHJ) architectures continue to attract significant interest due to their potential for low-cost fabrication by simple printing techniques and the ability to produce flexible and lightweight devices.[1]

  • We describe the synthesis and characterization of three small molecule diketopyrrolopyrrole (DPP) derivatives (DPP-BZ, DPP-ES, and DPP-AM) and their subsequent fabrication as BHJ devices with phenyl-C71-butyrate methyl ester (PC71BM)

  • Three DPP derivatives featuring electron-withdrawing units have been synthesized in respectable yields

Read more

Summary

Introduction

Solution-processed organic solar cells based upon bulk heterojunction (BHJ) architectures continue to attract significant interest due to their potential for low-cost fabrication by simple printing techniques and the ability to produce flexible and lightweight devices.[1] Significant progress was achieved in the development of BHJs featuring reasonable power conversion efficiencies (PCEs) from conjugated polymers as the donor component and methyl [6,6]-phenyl-C71-butyrate methyl ester (PC71BM) as the acceptor.[2] conjugated polymers have some important drawbacks, including limited batch-to-batch reproducibility and laborious purification, which limit their large-scale synthesis. For DPP-AM and DPP-ES, we have included 2-ethylhexyl side chains to promote good solubility of these derivatives and, in the case of DPP-AM, an amide unit that could have the propensity to participate in intermolecular hydrogen bonding

Synthesis
DPP-BZ
DPP-ES
DPP-AM
Electrochemistry
Solar cell fabrication and characterization
Results and Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.