Abstract

Rubrene and tetracyanoquinodimethane single-crystal transistors are fabricated incorporating secondary gates (split gates) on source and drain electrodes to reduce the interfacial barriers at the metal/semiconductor contacts. Separating the effect of the injection barriers, the intrinsic carrier transport in the semiconductor channels is extracted for the p-type rubrene crystal transistors and the n-type tetracyanoquinodimethane crystal transistors. The transconductance of the tetracyanoquinodimethane devices is drastically improved by activating the split-gate electrodes, indicating significant injection barriers in the n-type transistors. The result demonstrates that the technique is useful to improve transistor performance when it is restricted by the injection barriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call