Abstract

AbstractGating organic transistors with electric double layers (EDL) of electrolytes is advantageous in injecting high-density carriers with the application of minimum gate voltage. The drawback of such devices, however, has been that commonly used polymer electrolytes suffer relatively slow ionic diffusion before forming the EDLs. In this report, we disclose a new class of EDL devices incorporating low-viscosity room temperature ionic liquid as the electrolyte layer, so that the rapid ionic diffusion allows MHz operation for the transistor performance. We fabricate a well structure using an elastomeric rubber stamp of poly-dimethylsiloxane to hold the ionic liquid 1-ethyl 3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide, known for high ionic conductivity. The transistor performs without hysteresis with the carrier mobility of 5 cm2V−1s−1, realizing the highest sheet transconductance ever achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.