Abstract

The charge transport in organic materials, from molecular crystals to polymers, is determined by their degree of disorder. The dynamic disorder in ideal molecular crystals at room temperature and the static disorder in disordered polymers are just two limiting cases of the timescale of the fluctuations in the electronic Hamiltonian caused by nuclear motions. In fact, a very large number of important materials (e.g. liquid crystalline semiconductors) are actually in an intermediate regime where the disorder is neither purely static nor purely dynamic. This Minireview discusses the recent contribution of computational chemistry (molecular dynamics and quantum chemistry) to the characterization of these transport regimes and outlines the theoretical methods that can be used to relate the system characteristics to the measurable mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call