Abstract
In order to control light, different strategies have been applied by placing an optically active medium into a semiconductor resonator and certain applications such as LEDs and laser diodes have been commercialized for many years. The possibility of nanoscale optical applications has created great interesting for quantum nanostructure research. Recently, single photon emission has been an active area of quantum dot research. A quantum dot is place between distributed Bragg reflectors (DBRs) within a micro-pillar structure. In this study, we shall report on an active layer composed of an organic material instead of a semiconductor. The micro-pillar structure is fabricated by a focused ion beam (FIB) micro-machining technique. The ultimate target is to achieve a single molecule within the micro-pillar and therefore to enable single photon emission. Here, we demonstrate some results of the fabrication procedure of a 5 micron organic micro-pillar via the focused ion beam and some measurement results from this study. The JEOL 6500 dual column system equipped with both electron and ion beams enables us to observe the fabrication procedure during the milling process. Furthermore, the strategy of the FIB micro-machining method is reported as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.