Abstract

Enabled by the broad spectral gain and the efficient energy conversion in the active material, organic semiconductor lasers are promising for spectroscopic applications and have been recently applied for high resolution absorption and transmission spectroscopy. Here, we present the application of organic semiconductor DFB laser (DFB-OSL) as excitation source in Raman spectroscopy. Utilizing an efficient small molecule blend of tris (8-hydroxyquinoline) aluminum (Alq<sub>3</sub>) doped with the laser dye 4-(dicyano-methylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), our encapsulated DFB-OSL achieved a high slope efficiency of 7.6%. The organic lasers were tested in the inverted and upright Raman microscope setups, using free-beam and fibre coupling, respectively. In the free-beam configuration, the emission beam was guided directly into an inverted microscope. Employing a spectrally tunable DFBOSL as the excitation source, we measured the Raman spectra of sulfur and improved the Raman signals for a given optical filter configuration. In the fibre coupling configuration, the organic laser was coupled into a 50 μm multi-mode optical fibre with an efficiency of 70 %. We utilized a round-to-line fibre-bundle for an efficient collection and transfer of Raman light to a spectrograph, by keeping a sufficient spectral resolution. Raman tests were performed on cadmium sulfide and cyclohexane. Our novel fibre-coupled organic laser provides a modular laboratory Raman system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call