Abstract

Treatment of coal-to-gas brine (CGB) is a great challenge since it contains elevated inorganic salts and a high level of toxic and bio-accumulative organics. In this study, CGB treatment was conducted by adsorptionregeneration and electrochemically driven UV/chlorine (E-UV/Cl2) processes. LS-109D macroporous resin was optimal adsorbent primarily due to unique pore structure, which preferably adsorbed the aromatic fluorescent components with quenching Cl∙ effect and low molecular weight acids recalcitrant to ∙OH. The E-UV/Cl2 process outperformed the UV photolysis process and electrochemical advanced oxidation processes (EAOPs) for oxidation of organic compounds due to its full utilization of Cl- in CGB to produce highly active oxidation agents. Thanks to the synergy between process units in organic matter removal, dissolved organic carbon (DOC) of CGB was reduced from 163.41 mg/L to 26.58 mg/L by the multistage system. Furthermore, the CGB with characteristics of high fluorescence and molecular weight (MW) distribution was converted to effluent with low fluorescence and MW distribution. The exhausted LS-109D was regenerated by ultrasound-assisted hot water elution at 363 K. After pretreated by ozonation, the eluate can be easily treated by biological process. The study suggests that the multistage system can provide an effective treatment option for removing organics from CGB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call