Abstract

The Qatari marine environment is endangered due to high industrial expansion and anthropogenic pressure over the last few decades. The presence of common contaminants such as total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) is a threat to the marine environment. The aim of this study is to determine the environmental threats and risks posed by organic contaminants to Qatar’s marine environment using pearl oyster ‘Pinctada Radiata’ as the indicator study organism. The samples (marine sediment, seawater, and oysters) were collected four times within two years in different seasons from the four sites (Simaisma, Al Khor, Umm Bab, and Al Wakra), on March 2017, December 2017, May 2018, and November 2018. A total of 144 samples were analyzed, 48 samples of seawater, 48 samples of sediment and 48 samples of oysters. Levels of organic contaminants (TPHs and PAHs) were quantified in seawater, marine sediment and oyster tissues (P. radiata). In addition, the TOC and particle sizes were measured in abiotic matrices as well as the temperature, salinity, and pH of seawater in the study areas. Overall, the organic contaminants (TPHs and PAHs) were more readily detected in oyster tissue samples than marine sediment and seawater samples collected from the same areas. The surface seawater samples showed negligible levels of PAHs, while TPHs were ranged from 1.164 to 271.77 μg/L. The concentration of TPHs and PAHs in surface marine sediment were ranged between (75.02 -1751.82) and (4.25 - 36.73) μg/kg dry weight respectively. In oyster tissue samples, the level of TPHs was ranged from 633.33 to 6666.67 μg/kg dry weight, with the highest concentrations measured in Simaisma, while PAHs concentration showed an extreme variation from 25.90 to 2244.03μg/kg dry weight. The present study could, however, provide useful background information for further investigations to understand the presence of organic contaminants in Qatar’s marine environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.