Abstract

Long-range energy transfer in organic molecules has been experimentally obtained by strongly coupling their electronic excitations to a confined electromagnetic cavity mode. Here, we shed light into the polariton-mediated mechanism behind this process for different configurations: donor and acceptor molecules either intermixed or physically separated. We numerically address the phenomenon by means of Bloch-Redfield theory, which allows us to reproduce the effect of complex vibrational reservoirs characteristic of organic molecules. Our findings reveal the key role played by the middle polariton as the non-local intermediary in the transmission of excitations from donor to acceptor molecules. We also provide analytical insight on the key physical magnitudes that helps to optimize the efficiency of the long-range energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.