Abstract

Organic photovoltaics (OPVs) utilizing an interdigitated bilayer of an alkoxynaphthalene-based polymer nanofiber/fullerene have been developed by the sequential solution deposition (SqD) process. Spin-coating a polymer solution incorporated with 1-chloronaphthalene (1-CN) results in the formation of dense polymer nanofibers with diameters of 30–50 nm. The fullerene top layer is sequentially deposited onto the polymer nanofiber bottom layer to form a bulk heterojunction (BHJ) through the interdiffusion of fullerene. Compared to a plane polymer bottom layer, the preformed polymer nanofiber bottom layer provides effective interdiffusion of phenyl-C71-butyric acid methyl ester (PCBM) by facilitating the fast swelling of the PCBM solvent into the polymer bottom layer. The SqD processed OPV utilizing a polymer nanofiber/fullerene bilayer exhibits higher photocurrent density compared to those utilizing a plane polymer layer/fullerene bilayer. Furthermore, the SqD OPV exhibited superior solar cell performance to ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call