Abstract

Organic phototransistors (OPTs) are attracting a significant degree of interest as devices that have the potential to play multiple roles, including light sensing, signal amplification, and switching for addressing when they are used for matrix arrays. However, it has been challenging to realize OPTs that can perform all of these roles simultaneously at a sufficient performance level because the channel materials with high carrier mobility often exhibit relatively low photoabsorption. In this work, we propose OPTs with a hybrid bilayer channel consisting of a neat C60 layer and a bulk-heterojunction layer of C70 and 1,1-bis(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane (TAPC) as a possible solution to this issue. While the C60 layer serves as the main carrier-transporting layer with high mobility, the C70:TAPC layer operates as a photoactive layer wherein the photogenerated carriers provide photoinduced contact modulation that leads to a significant enhancement in photosensitivity. With the optimal design maximizing the absorption, the proposed hybrid-channel OPTs show a responsivity of ca. 180 A/W, which is 4.5 times higher than that of the control OPT with a C70:TAPC single channel. The operation mechanism and the origin for the improvement are verified by an in-depth analysis of the photoinduced modulation of the channel and contact resistances of the OPTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.