Abstract
Organic photoelectrochemical transistor (OPECT) biosensor is now appearing in perspective of public, which characterized by amplified the grating electrode potential by ion transport. In this study, the DNA network formed by the hybridization chain reaction (HCR) detects the target adenosine triphosphate (ATP) by adjusting the surface potential of the new heterojunction of ZnIn2S4/MXene. The formation of DNA network amplifies the detection signal of ATP. Significantly, OPECT biosensor could further amplify the signal, which calculated the gain achieved 103, which is consistent with the gain signal of the previously reported OPECT biosensor. Furthermore, the OPECT biosensor achieved a highly sensitivity detection of the target ATP, which the linear detection range is 0.03 pM–30 nM, and the detection limit is 0.03 pM, and illustrated a high selectivity to ATP. The proposed OPECT biosensor achieved signal amplification by adjusting the surface potential of ZnIn2S4/MXene through cascade DNA network, which provides a new direction for the detection of biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.