Abstract

In organic photodiodes (OPDs) light is absorbed by excitons, which dissociate to generate photocurrent. Here, we demonstrate a novel type of OPD in which light is absorbed by polaritons, hybrid light-matter states. We demonstrate polariton OPDs operating in the ultra-strong coupling regime at visible and infrared wavelengths. These devices can be engineered to show narrow responsivity with a very weak angle-dependence. More importantly, they can be tuned to operate in a spectral range outside that of the bare exciton absorption. Remarkably, we show that the responsivity of a polariton OPD can be pushed to near infrared wavelengths, where few organic absorbers are available, with external quantum efficiencies exceeding those of a control OPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.