Abstract

Perovskite oxides and organic-inorganic halide perovskite materials, with numerous fascinating features, have been subjected to extensive studies. Most of the properties of perovskite materials are dependence on their ferroelectricity that denoted by remanent polarization (Pr). Thus, the increase of Pr in perovskite films is mainly an effort in material physics. At present, commonplace improvement schemes, i.e., controlling material crystallinity, and post-annealing by using a high-temperature process, are normally used. However, a simpler and temporal strategy for Pr improvement is always unavailable to perovskite material researchers. In this study, an organic coating layer, low-temperature, and vacuum-free strategy is proposed to improve the Pr, directly increasing the Pr from 36 to 56µCcm-2. Further study finds that the increased Pr originates from the suppression of the oxygen defects and Ti defects. This organic coating layer strategy for passivating the defects may open a new way for the preparation of higher-performance and cost-effective perovskite products, further improving its prospective for application in the electron devices field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.