Abstract

In the mammalian kidney renal medullary cells use organic osmolytes such as sorbitol, myo-inositol, glycerophosphorylcholine, betaine, and taurine to adjust their intracellular osmolarity (and thereby their volume) to rapid and drastic changes in extracellular osmolarity. Using an immortalized cell line derived from rabbit thick ascending limb of Henle's loop (TALH cells) and primary cultures of rat inner medullary collecting duct (IMCD cells) the membrane transport systems activated during exposure to hypotonicity were investigated. In TALH cells an increase in sorbitol permeability of the (luminal) plasma membrane occurs by activation of a channel-like transporter involving a calcium/calmodulin-dependent protein kinase. A similar system seems to operate in IMCD cells. In addition, the latter cells possess a swelling-activated anion channel that is also permeable for taurine and myo-inositol and inhibited by “anion channel” blockers, such as NPPB and DIDS. The sorbitol permeability of the plasma membrane appears to be furthermore regulated by a transient insertion of active transporters into the basolateral cell surface by a membrane recycling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.