Abstract
Nitrogen (N) form affects secondary metabolites of medicinal plants, but the physiological and molecular mechanisms remain largely unknown. To fully understand the response of andrographolide biosynthesis to different N forms in Andrographis paniculata, the plants were fed with nutritional solution containing sole N source of nitrate (NO3−), ammonium (NH4+), urea or glycine (Gly), and the growth, carbon (C) and N metabolisms and andrographolide biosynthesis were analyzed. We found that plants grown in urea and Gly performed greater photosynthetic rate and photosynthetic N use efficiency (PNUE) than those grown in NO3− and NH4+. Organic N sources reduced the activities of enzymes involving in C and N metabolisms such as glutamine synthase (GS), glutamate synthase (GOGAT) and NADH-dependent glutamate dehydrogenase (NADH-GDH), invertase (INV), isocitrate dehydrogenase (ICDH) and glycolate oxidase (GO), resulting in reduced depletion of carbohydrates and increased starch accumulation. However, they enhanced andrographolide content by up-regulating the key genes in its biosynthetic pathway including HMGR, DXS, GGPS and ApCPS. Besides, NH4+ decreased leaf SPAD value, contents of soluble protein and amino acids and GO activity, but increased photosynthetic rate and contents of soluble sugar and starch in comparison to NO3−. Andrographolide biosynthesis was also up-regulated. The results revealed that increasing accumulation of carbohydrates, especially starch, was beneficial to the biosynthesis of andrographolide; organic N sources decreased carbohydrate depletion by reducing N metabolism, and promoted plant growth and andrographolide biosynthesis synergistically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.