Abstract
Atmospheric nitrogen (N) deposition alters the priming effect (PE), which is defined as the change in native soil organic carbon (SOC) decomposition by exogenous C inputs. However, how the priming intensity varies under chemically heterogeneous N deposition, particularly with increasing labile C input, remains unclear. We collected soils from a temperate forest in northeastern China that had received simulated organic and/or inorganic N deposition for 6 years. The soils were incubated with or without three levels of 13C-labelled glucose solution for 152 days. CO2 emission and its 13C value were continuously measured to calculate the PE. Enhanced SOC decomposition (i.e., a positive PE) was observed after glucose addition, regardless of the N deposition form. The PE intensity increased with the increase in the glucose addition level. However, organic N decreased the PE by 12.3-23.2%. The SOC-derived microbial biomass was 16.2-34.3% lower in organic N-treated soil, indicating that preferential utilization of exogenous labile C by microorganisms was responsible for the decrease in PE. The PE inhibition by organic N increased nonlinearly as a function of glucose level. Furthermore, the net annual change in SOC as a balance between the replenishment of added glucose-C and primed C was larger in organic N-treated soil due to a decrease in soil microbial metabolic quotient. In this study, we found that organic N deposition inhibited the PE, and the inhibition effect was intensified with increasing C inputs, favouring SOC sequestration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.