Abstract

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)/Bi2Se3 and Fe/PTCDA/Bi2Se3 heterointerfaces are investigated using scanning tunneling microscopy and spectroscopy. The close-packed self-assembled PTCDA monolayer possesses big molecular band gap and weak molecule-substrate interactions, which leaves the Bi2Se3 topological surface state intact under PTCDA. Formation of Fe-PTCDA hybrids removes interactions between the Fe dopant and the Bi2Se3 surface, such as doping effects and Coulomb scattering. Our findings reveal the functionality of PTCDA to prevent dopant disturbances in the TSS and provide an effective alternative for interface designs of realistic TI devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.