Abstract

Organic molecule (Histidine) embedded cadmium sulfide (CdS) nanocomposites are prepared by the solvothermal method. CdS nanocomposite, prepared with 1:1 M ratio of S2− to Cd2+, shows the highest crystallinity and highest hydrogen production via water splitting. Optimization of Pt deposition indicates that 5.5 wt% of Pt deposition on CdS nanocomposite produces the highest amount of H2 gas. Moreover, the contents of histidine in CdS were changed from 0.0 to 2.5 mmol, and the result shows that CdS nanocomposite with 1 mmol of histidine has the highest rate of hydrogen production (21.35 mmol/g/h). This is one of the highest rates of hydrogen production from a single semiconductor photocatalyst system under visible light irradiation. These results indicate that organic molecules embedded CdS nanocomposites could be a promising photocatalyst for hydrogen production via water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call