Abstract
A hybrid inorganic/organic microcavity system is presented in which an AlInP-based rolled-up microtube resonator is combined with a thin film of naphthyl end-capped bithiophene molecules. The film is laterally structured into stripes on top of the AlInP layer system before the roll-up process. During the process, the strained bilayer together with the organic molecular stripes rolls up, and a hybrid microtube is formed. The stripes act as visible-light emitters inside the otherwise passive microtube. Furthermore, they induce a light confinement in the axial direction of the microtube, additional to the radial and azimuthal confinement that is intrinsic to a microtube. As the organic material defines the cavity and represents the emitter at the same time, an efficient light coupling into the three-dimensionally confined optical modes of the microtube resonator is ensured. The hybrid microtubes open up the opportunity for novel experiments on the light–molecule interaction as well as their application in op...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.