Abstract

A new type of organic compound for modifying clay minerals suitable for use in plasticized polyvinyl chloride was selected and studied. The theory of Hansen solubility parameters was used to predict the miscibility between potential organomodifiers and polyvinyl chloride. In a series of systematic experiments using four very different solvents (i.e., water, ethanol, tetrahydrofuran and chloroform) and three different types of Mt (i.e., Mt-Na+, Mt-PGV and Mt-Ca++), the importance of various parameters to the process of clay mineral intercalation was investigated. The effects of each combination were evaluated employing wide-angle X-ray diffraction and thermogravimetry. The results of swelling experiments on clay mineral in various solvents correlated well with the results of a theoretical preliminary study using Hansen solubility parameters. The extent of swelling followed the order H2O>EtOH>THF>chloroform. The d-spacing seemed to be little affected by the type of solvent used in the modification, while the type of Mt used was important to the intercalation results. Organomodification of Mt-Na+ increased the d-spacing by nearly 0.7nm when tributyl citrate was used as a chelating agent. Similar modification of Mt-Ca++ showed an increase of 0.3nm only. Furthermore, thermogravimetry and DTG curves showed significant structural differences between Mt-Na+ and Mt-Ca++.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.