Abstract

Recently, organic materials with mixed ion/electron conductivity (OMIEC) have gained significant interest among research communities all over the world. The unique ability to conduct ions and electrons in the same organic material adds to their use in next generation electrochemical, biotechnological, energy generation, energy storage, electrochromic, and sensor devices. Semiconducting conjugated polymers are well-known OMIECs due to their feasibility for both ion and electron transport in the bulk region. In this mini-review, we have shed light on conjugated polymers with ionic pendent groups, block copolymers of electronically and ionic conducting polymers, polymer electrolytes, blends of conjugated polymers with polyelectrolyte/polymer electrolytes; blends of conducting polymer with small organic molecules including conducting polymer–peptide conjugates; and blends of nonconjugated polymers as mixed conducting systems. These systems not only include the well-studied OMEIC systems, but also include some new systems where the OMEIC property has been predicted from the typical current–voltage (I–V) plots. The conduction mechanism of ions and electrons, ion-electron coupling, directionality, and dimensionality of these OMEIC materials are discussed in brief. The different properties of OMEIC materials and their applications in diverse fields like energy, electrochromic, biotechnology, sensing, and so forth are enlightened together with the perspective for future improvement of OMEIC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.