Abstract

Many traditional drinking water treatment processes have limited removal efficiencies on natural organic matter (NOM) and organic micropollutants (OMPs), and thus may lead to the production of harmful disinfection byproducts (DBPs). We examined four kinds of anion exchange resins (D205, D213, NDMP-3, and M80) in conjunction with chlorination in the treatment of drinking water. Five categories including 40 OMPs at environmentally relevant concentrations were analyzed. M80 showed the best performance to remove OMPs in water. However, it was vulnerable to the presence of humic acid (HA), indicating its limitation on removing OMPs and NOM at the same time. In contrast, D205, D213, NDMP-3 resins were less affected by HA. Besides, D205, D213 and NDMP-3 provided higher efficiencies on the reduction of DBPs than M80. The amount of trihalomethanes (THMs) lowered by 42.7%, 37.6%, 32.1%, and 0%, whereas haloacetic acids (HAAs) were decreased by 34.0%, 31.2%, 23.0%, and 17.9% by D205, D312, NDMP-3, and M80. Notably, D205 showed the highest removal effects on the bromide ion, brominated THMs, and HAAs, supporting that D205 can be a selective resin for the treatment of drinking water in high bromide-containing areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.