Abstract

This study investigated the technical applicability of a combination of Phanerochaete chrysosporium (P. chrysosporium) with photocatalyst graphitic carbon nitride (g-C3N4) for organic matters removal from landfill leachate under visible light irradiation. Photocatalyst g-C3N4 was well immobilized on the hyphae surface of P. chrysosporium by calcium alginate. The typical absorption edge in visible light region for g-C3N4 was at about 460 nm, and the optical absorption bandgap of g-C3N4 was estimated to be 2.70 eV, demonstrating the great photoresponsive ability of g-C3N4. An optimized g-C3N4 content of 0.10 g in immobilized P. chrysosporium and an optimized immobilized P. chrysosporium dosage of 1.0 g were suitable for organic matters removal. The removal efficiency of total organic carbon (TOC) reached 74.99% in 72 h with the initial TOC concentration of 100 mg L−1. In addition, the gas chromatography coupled with mass spectrometry (GC-MS) measurements showed that immobilized P. chrysosporium presented an outstanding removal performance for almost all organic compounds in landfill leachate, especially for the volatile fatty acids and long-chain hydrocarbons. The overall results indicate that the combination P. chrysosporium with photocatalyst g-C3N4 for organic matters removal from landfill leachate may provide a more comprehensive potential for the landfill leachate treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call