Abstract

We characterized peat decomposition at the Marcell Experimental Forest (MEF), Minnesota, USA, to a depth of 2 m to ascertain the underlying chemical changes using Fourier transform infrared (FT IR) and 13C nuclear magnetic resonance (NMR) spectroscopy) and related these changes to decomposition proxies C:N ratio, δ13C and δ15N, bulk density, and water content. FT IR determined that peat humification increased rapidly between 30 and 75 cm, indicating a highly reactive intermediate-depth zone consistent with changes in C:N ratio, δ13C and δ15N, bulk density, and water content. Peat decomposition at the MEF, especially in the intermediate-depth zone, is mainly characterized by preferential utilization of O-alkyl-C, carboxyl-C, and other oxygenated functionalities with a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75 cm, less change was observed but aromatic functionalities and lignin accumulated with depth. Significant correlations with humification indices, identified by FT IR spectroscopy, were found for C:N ratios. Incubation studies at 22°C revealed the highest methane production rates, greatest CH4:CO2 production ratios, and significant O-alkyl-C utilization within this 30 and 75 cm zone. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as excellent proxies for soil decomposition rate and should be a sensitive indicator of the response of the solid phase peat to increased temperatures caused by climate change and the field study manipulations that are planned to occur at this site. Radiocarbon signatures of microbial respiration products in deeper pore waters at the MEF resembled the signatures of more modern dissolved organic carbon rather than solid phase peat, indicating that recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. These results indicate that carbon cycling at depth at the MEF is not isolated from surface processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.