Abstract

BackgroundLand-use change and forest management may alter soil organic matter (SOM) and nutrient dynamics, due in part to alterations in litter input and quality. Acacia was introduced in eucalypt plantations established in the Congolese coastal plains to improve soil fertility and tree growth. Eucalypt trees were expected to benefit from N2 fixed by acacia. However, some indicators suggest a perturbation in SOM and P dynamics might affect the sustainability of the system in the medium and long term. In tropical environments, most of the nutrient processes are determined by the high rates of organic matter (OM) mineralization. Therefore, SOM stability might play a crucial role in regulating soil-plant processes. In spite of this, the relationship between SOM quality, C and other nutrient dynamics are not well understood. In the present study, OM quality and P forms in forest floor and soil were investigated to get more insight on the C and P dynamics useful to sustainable management of forest plantations.MethodsThermal analysis (differential scanning calorimetry (DSC) and thermogravimetry (TGA)) and nuclear magnetic resonance (solid state 13C CPMASS and NMR and 31P-NMR) spectroscopy have been applied to partially decomposed forest floor and soils of pure acacia and eucalypt, and mixed-species acacia-eucalypt stands.ResultsThermal analysis and 13C NMR analysis revealed a more advanced stage of humification in forest floor of acacia-eucalypt stands, suggesting a greater microbial activity in its litter. SOM were related to the OM recalcitrance of the forest floor, indicating this higher microbial activity of the forest floor in this stand might be favouring the incorporation of C into the mineral soil.ConclusionsIn relation with the fast mineralization in this environment, highly soluble orthophosphate was the dominant P form in both forest floor and soils. However, the mixed-species forest stands immobilized greater P in organic forms, preventing the P losses by leaching and contributing to sustain the P demand in the medium term. This shows that interactions between plants, microorganisms and soil can sustain the demand of this ecosystem. For this, the forest floor plays a key role in tightening the P cycle, minimizing the P losses.

Highlights

  • Land-use change and forest management may alter soil organic matter (SOM) and nutrient dynamics, due in part to alterations in litter input and quality

  • The mixed-species forest stands immobilized greater P in organic forms, preventing the P losses by leaching and contributing to sustain the P demand in the medium term. This shows that interactions between plants, microorganisms and soil can sustain the demand of this ecosystem

  • Concentrations of N, C and P in forest floor and mineral soils Table 1 shows the data of C, N and P in mineral soil and forest floor for the three types of stands studies: pure stands of acacia (100A), of eucalypt (100E) and the mixed of acacia and eucalypt (50A50E)

Read more

Summary

Introduction

Land-use change and forest management may alter soil organic matter (SOM) and nutrient dynamics, due in part to alterations in litter input and quality. One management practice that was predicted to be compatible with soil constraints was afforestation with fast growing eucalypt in the 1950s (Makany 1964), to provide wood for industrial and fuel energy for the rural population, since more than 94% of population use natural wood and charcoal for energy (Shure et al 2010) Their productivity declines in second and subsequent rotations due to a sharp decrease in soil fertility, since low amounts or lack of fertilizers cannot compensate for nutrients exported through tree harvest (Corbeels et al 2005; Laclau et al 2005)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call