Abstract

AbstractWhen the effect of water content was minimized, soil CO2 evolution and soil organic matter content were good predictors of aerobic NO. uptake rate constants across a wide range of soil types. Field manure application to a Gleysol stimulated NO. uptake rate constants and lowered NO. compensation points compared to unfertilized or NH4NO3‐fertilized soil. This effect lasted for months after manure application. In a laboratory experiment, addition of manure reduced the NO. efflux associated with nitrification of NH4 Cl fertilizer, and manured soils had a greater capacity to remove NO. from polluted air. Evidence is presented that these observations result from NO. oxidation during heterotrophic microbial activity in soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.