Abstract

Bioanodes in a soil microbial fuel cell (SMFC) can serve as sustainable electron acceptors in microbial metabolism processes; thus, SMFCs are considered a promising in situ bioremediation technology. Most related studies have focused on the removal efficiency of contaminants. Relatively few efforts have been made to comprehensively investigate the organic matter composition and biodegradation metabolites of organic contaminants and microbial communities at various distances from the bioanode. In this study, the level and composition of dissolved organic matter (DOM), biodegradation metabolites of benzo[a]pyrene (BaP), and microbial communities at two sites with different distances (S1cm and S11cm) to the bioanode were investigated in an SMFC. The consumption efficiency of dissolved organic carbon (RDOC) and removal efficiency of BaP (RBaP) at S1cm were slightly higher than those at S11cm after 100 days (RDOC 47.82 ± 5.77% at S1cm and 44.98 ± 10.76% at S11cm; RBaP 72.52 ± 1.88% at S1cm and 68.50 ± 4.34% at S11cm). More fulvic acid-like components and more low-molecular-weight metabolites (indicating a higher biodegradation degree) of BaP were generated at S1cm than at S11cm. The microbial community structures were similar at the two sites. Electroactive bacteria (EAB) and some polycyclic aromatic hydrocarbon degraders were both enriched at the bioanode. Energy metabolism at the bioanode could be upregulated to generate more adenosine triphosphate (ATP). In conclusion, the bioanode could modulate the metabolic pathways in the adjacent soil by strengthening the contact between the EAB and BaP degraders, and providing more ATP to the BaP degraders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.